Algae as a Source of Nutraceutical Compounds

Main Article Content

Aimen Azhar
Rukhama Haq
Saiqa Ilyas
Neelma Munir

Abstract

Now a days pharmacists are producing efficient medicines from novel sources and algae is a potential microplant that can help in the pharmaceutical industry by exhibiting antimicrobial activity. Due to the increasing demand for therapeutic drugs through natural resources, there is a greater interest in aquatic organisms, especially algae. Algae are being explored as significant high yield feedstock to meet the medicinal needs and therapeutics. The ability of macroalgal species to produce antimicrobial agents of potential interest, have been extensively documented. Prolific source of highly bioactive compounds, algae represents the useful leads in the development of medication industries. Exceedingly medicinal demand of pharmaceutical companies is being accomplished though, but human physical state thirst for healthy food which possess ultimate nutriment worth. Thus nutraceuticals can serve human wellness in a way they provide functional foods which improve health in addition to disease remediation. In this study centre of attention is to unveil the nutraceutical power of algae. First, introduction to algae is described. Second, nutraceuticals worth, their types and extraction from algae have been demonstrated. Third, diverse bioactivities of algae are disclosed and countless alga manifesting their nutraceutical advancement have been reported by many researchers and among them Spirulina and Chlorella are of prime importance. The last part is dedicated to variety of factors which affect nutraceutical composition.


 

Article Details

Section

Review

How to Cite

Azhar, A., Haq, R., Ilyas, S., & Munir, N. (2025). Algae as a Source of Nutraceutical Compounds. Plant Research Journal, 1(01), 1-15. https://verdeco.org/index.php/journal_plant-research-journal/article/view/2

References

Abdelhamid, A., Jouini, M., Amor, H. B. H., Mzoughi, Z., Dridi, M., Said, R. B. and Bouraoui, A. (2018). Phytochemical Analysis and Evaluation of the Antioxidant, Anti-inflammatory, and Antinociceptive Potential of Phlorotannin-Rich Fractions from Three Mediterranean Brown Seaweeds. Marine Biotechnology, 20(1), 60-74.

Abreu, T. M., Ribeiro, N. A., Chaves, H. V., Jorge, R. J. B., Bezerra, M. M., Monteiro, H. S. A., Vasconcelos, I. M., Mota, É. F. and Benevides, N. M. (2016). Antinociceptive and anti-inflammatory activities of the lectin from marine red alga Solieria filiformis, 82(07), 596-605.

Ahmad, S., Jan, K., Sahu, J. K., Habib, M., Jan, S., & Bashir, K. (2024). A Comprehensive Review on Recent Trends and Utilization of Algal β-Glucan for the Development of Nutraceuticals and Functional Foods. Food Reviews International, 41(2), 469–490.

Akbarzadeh, S., Gholampour, H., Farzadinia, P., Daneshi, A., Ramavandi, B., Moazzeni, A., Keshavarz, M. and Bargahi, A. 2018. Anti-diabetic effects of Sargassum oligocystum on Streptozotocin-induced diabetic rat. Iranian Journal of Basic Medical Sciences, 21(3), 342.

Alboofetileh, M., Rezaei, M., Tabarsa, M., Rittà, M., Donalisio, M., Mariatti, F., You, S., Lembo, D. and Cravotto, G. (2019). Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. International Journal of Biological Macromolecules, 124, 131-137.

Alghazeer, R., Whida, F., Abduelrhman, E., Gammoudi, F., & Naili, M. (2013). In vitro antibacterial activity of alkaloid extracts from green, red and brown macroalgae from western coast of Libya. African Journal of Biotechnology, 12(51), 7086-7091.

Ananthi, S., Raghavendran, H. R. B., Sunil, A. G., Gayathri, V., Ramakrishnan, G. and Vasanthi, H. R. (2010). In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food and Chemical Toxicology, 48(1), 187-192.

Ávila, F. N., Pinto, F. C., Carneiro, P., Ferreira, K. Q., Wilke, D. V., Nogueira, N. A., Silveira, E. R. and Pessoa, O. D. (2019). New Antiproliferative Polyunsaturated Epoxy-Heneicosane Derivatives Isolated from the Brown Alga Lobophora variegata, 30(2), 406-412.

Aziz, M. M., Eid, N. I., Nada, A. S., Amin, N. E.-D. and Ain-Shoka, A. A. (2018). Possible protective effect of the algae Spirulina against nephrotoxicity induced by cyclosporine A and/or gamma radiation in rats. Environmental Science and Pollution Research, 25(9), 9060-9070.

Baldrick, F. R., McFadden, K., Ibars, M., Sung, C., Moffatt, T., Megarry, K., Thomas, K., Mitchell, P., Wallace, J. M. and Pourshahidi, L. K. (2018). Impact of a (poly) phenol-rich extract from the brown algae Ascophyllum nodosum on DNA damage and antioxidant activity in an overweight or obese population: a randomized controlled trial. The American Journal of Clinical Nutrition, 108(4), 688-700.

Bhagavathy, S., Sumathi, P. and Bell, I. J. S. (2011). Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine, 1(1), S1-S7.

Bhatia, S., Sardana, S., Senwar, K. R., Dhillon, A., Sharma, A. and Naved, T. (2019a). In vitro antioxidant and antinociceptive properties of Porphyra vietnamensis. BioMedicine, 9(1).

Bhatia, S., Sardana, S., Senwar, K. R., Dhillon, A., Sharma, A. and Naved, T. J. B. (2019b). In vitro antioxidant and antinociceptive properties of Porphyra vietnamensis. BioMedicine, 9(1): 3.

Bhatia, S., Sharma, K., Sharma, A., Nagpal, K., & Bera, T. (2015). Anti-inflammatory, Analgesic and Antiulcer properties of Porphyra vietnamensis. Avicenna journal of phytomedicine, 5(1), 69.

Bishop, W. and Zubeck, H. (2012). Evaluation of microalgae for use as nutraceuticals and nutritional supplements. Journal of Nutrition and Food Science, 2(5), 1-6.

Borlongan, I. A. G., Luhan, M. R. J., Padilla, P. I. P. and Hurtado, A. Q. (2016). Photosynthetic responses of ‘Neosiphonia sp. epiphyte-infected’and healthy Kappaphycus alvarezii (Rhodophyta) to irradiance, salinity and pH variations. Journal of Applied Phycology, 28(5), 2891-2902.

Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25(3), 743-756.

Brito da Matta, C. B., De Souza, É. T., De Queiroz, A. C., De Lira, D. P., De Araújo, M. V., Cavalcante-Silva, L. H. A., De Miranda, G. E. C., Araújo-Júnior, D., Xavier, J. and Barbosa-Filho, J. M. (2011). Antinociceptive and anti-inflammatory activity from algae of the genus Caulerpa. Marine Drugs, 9(3), 307-318.

Bülent, A., Zeynep, A. and Şahin, B. (2019). Identification of Antioxidant Activity by Different Methods of a Freshwater Alga (Microspora sp.) collected from a High Mountain Lake. Hittite Journal of Science & Engineering, 6(1), 25-29.

Cadar, E., Popescu, A., Dragan, A.-M.-L., Pesterau, A.-M., Pascale, C., Anuta, V., Prasacu, I., Velescu, B. S., Tomescu, C. L., Bogdan-Andreescu, C. F., Sirbu, R., & Ionescu, A.-M. (2025). Bioactive Compounds of Marine Algae and Their Potential Health and Nutraceutical Applications: A Review. Marine Drugs, 23(4), 152. https://doi.org/10.3390/md23040152

Cao, L., Iris, K. M., Cho, D. W., Wang, D., Tsang, D. C., Zhang, S., ... & Ok, Y. S. (2019). Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresource technology, 273, 251-258.

Capelli, B., Bagchi, D. and Cysewski, G. R. (2013a). Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods, 12(4), 145-152.

Capelli, B., Bagchi, D. and Cysewski, G. R. (2013b). Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods, 12(4), 145-152.

Cavas, L. and Pohnert, G. (2010). The potential of Caulerpa spp. for biotechnological and pharmacological applications Seaweeds and their role in globally changing environments (pp. 385-397), Springer.

Černá, M. (2011). Seaweed proteins and amino acids as nutraceuticals Advances in food and nutrition research, Vol. 64, pp. 297-312, Elsevier.

Chaves, L., Nicolau, L. A. D., Silva, R. O., Barros, F. C. N., Freitas, A. L. P., Aragão, K. S., Ribeiro, R. d. A., Souza, M. H. L. P., Barbosa, A. L. R. and Medeiros, J. (2013). Antiinflammatory and antinociceptive effects in mice of a sulfated polysaccharide fraction extracted from the marine red algae Gracilaria caudata. Immunopharmacology and immunotoxicology, 35(1), 93-100.

Chen, J., Li, H., Zhao, Z., Xia, X., Li, B., Zhang, J. and Yan, X. J. (2018). Diterpenes from the marine algae of the genus Dictyota. Marine Drugs, 16(5), 159.

Cho, S., Lim, B., Jung, J., Kim, S., Chae, H., Park, J., Park, S. and Park, J. K. (2014). Factors affecting algal blooms in a man-made lake and prediction using an artificial neural network. Measurement, 53, 224-233.

Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. and Del Borghi, M.

(2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151.

Cremonte, M., Sisti, D., Maraucci, I., Giribone, S., Colombo, E., Rocchi, M. B. L., & Scoglio, S. (2017). The Effect of experimental supplementation with the Klamath algae extract Klamin on attention-deficit/hyperactivity disorder. Journal of Medicinal Food, 20(12), 1233-1239.

Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D'incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E. and Bilan, M. I. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17(5), 541-552.

Dasgupta, C. N. (2015). Algae as a source of phycocyanin and other industrially important pigments Algal Biorefinery: An Integrated Approach, pp. 253-276, Springer.

De Almeida, C. L. F., Falcão, D. S., Lima, D. M., Gedson, R., Montenegro, D. A., Lira, N. S., Athayde-Filho, D., Petrônio, F., Rodrigues, L. C. and De Souza, M. (2011). Bioactivities from marine algae of the genus Gracilaria. International Journal of Molecular Sciences, 12(7), 4550-4573.

de Carvalho, M. M., de Freitas, R. A., Ducatti, D. R., Ferreira, L. G., Gonçalves, A. G., Colodi, F. G., Mazepa, E., Aranha, E. M., Noseda, M. D. and Duarte, M. E. R. (2018). Modification of ulvans via periodate-chlorite oxidation: Chemical characterization and anticoagulant activity. Carbohydrate polymers, 197, 631-640.

dos Santos-Fidencio, G. C., Gonçalves, A. G., Noseda, M. D., Duarte, M. E. R. and Ducatti, D. R. (2019). Effects of carboxyl group on the anticoagulant activity of oxidized carrageenans. Carbohydrate Polymers. 214, 286-293.

El-Shazoly, R. M. and Fawzy, M. A. 2018. Biochemical composition and antioxidant properties of some seaweeds from Red Sea coast. Egyptian European Journal of Biological Research, 8(4), 232-242.

Eren, B., Tuncay Tanrıverdi, S., Aydın Köse, F., & Özer, Ö. (2019). Antioxidant properties evaluation of topical astaxanthin formulations as anti‐aging products. Journal of Cosmetic Dermatology, 18(1), 242-250.

Fábregas, J., Maseda, A., Domínguez, A. and Otero, A. (2004). The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture. World Journal of Microbiology and Biotechnology, 20(1), 31-35.

Faggio, C., Pagano, M., Dottore, A., Genovese, G. and Morabito, M. (2016). Evaluation of anticoagulant activity of two algal polysaccharides. Natural product research, 30(17), 1934-1937.

Fernando, I. S., Nah, J.-W. and Jeon, Y.-J. (2016). Potential anti-inflammatory natural products from marine algae. Environmental Toxicology and Pharmacology, 48, 22-30.

Fukuchi, A., Sang-ngern, M., Sunada, N., Phosri, S., Tan, G. T. and Chang, L. C. (2018). Evaluation of antioxidant and anti-cancer activities of Fucose-containing sulfated polysaccharide (FCSPs) from Hawaiian Marine Algae.

Gan, S. Y., Wong, L. Z., Wong, J. W. and Tan, E. L. (2019). Fucosterol exerts protection against amyloid β-induced neurotoxicity, reduces intracellular levels of amyloid β and enhances the mRNA expression of neuroglobin in amyloid β-induced SH-SY5Y cells. International journal of biological macromolecules, 121: 207-213.

Gao, X., Endo, H. and Agatsuma, Y. (2018). Comparative study on the physiological differences between three Chaetomorpha species from Japan in preparation for cultivation. Journal of applied phycology, 30(2), 1167-1174.

Ghosh, T., Paliwal, C., Maurya, R. and Mishra, S. (2015). Microalgal rainbow colours for nutraceutical and pharmaceutical applications Plant Biology and Biotechnology, pp. 777-791, Springer.

Gondim, A. C., da Silva, S. R., Mathys, L., Noppen, S., Liekens, S., Sampaio, A. H., Nagano, C. S., Rocha, C. R. C., Nascimento, K. S. and Cavada, B. S. 2019. Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. MedChemComm.

Grice, I. and Mariottini, G. (2018). Glycans with Antiviral Activity from Marine Organisms Marine Organisms as Model Systems in Biology and Medicine, pp. 439-475, Springer.

Guedes, É. A., Silva, T. G. d., Aguiar, J. S., Barros, L. D. d., Pinotti, L. M. and Sant'Ana, A. E. (2013). Cytotoxic activity of marine algae against cancerous cells. Revista Brasileira de Farmacognosia, 23(4), 668-673.

Güven, K. C., Percot, A. and Sezik, E. (2010a). Alkaloids in marine algae. Marine drugs, 8(2), 269-284.

Güven, K. C., Percot, A. and Sezik, E. J. M. D. (2010b). Alkaloids in marine algae. Marine Drugs, 8(2), 269-284.

Hassan, S., Abd El-Twab, S., Hetta, M., & Mahmoud, B. (2011). Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus. Saudi journal of biological sciences, 18(4), 333-340.

Hwang, S. H., Jang, J. M. and Lim, S. S. (2012). Isolation of fucosterol from Pelvetia siliquosa by high-speed countercurrent chromatography. Fisheries and aquatic sciences, 15(3), 191-195.

Ismail, A., Ktari, L., Ahmed, M., Bolhuis, H., Bouhaouala-Zahar, B., Stal, L., Boudabbous, A. and El Bour, M. (2018). Heterotrophic bacteria associated with the green alga Ulva rigida: identification and antimicrobial potential. Journal of applied phycology, 1-17.

Joana Gil‐Chávez, G., Villa, J. A., Fernando Ayala‐Zavala, J., Basilio Heredia, J., Sepulveda, D., Yahia, E. M., & González‐Aguilar, G. A. (2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Comprehensive Reviews in Food Science and Food Safety, 12(1), 5-23.

Juneja, A., Ceballos, R. and Murthy, G. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, 6(9), 4607-4638.

Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of novel extraction technologies for bioactives from marine algae. Journal of agricultural and food chemistry, 61(20), 4667-4675.

Kammoun, I., Ben Salah, H., Ben Saad, H., Cherif, B., Droguet, M., Magné, C., ... & Ben Amara, I. (2018). Hypolipidemic and cardioprotective effects of Ulva lactuca ethanolic extract in hypercholesterolemic mice. Archives of Physiology and Biochemistry, 124(4), 313-325.

Kang, K. H., Qian, Z. J., Ryu, B., Kim, D., & Kim, S. K. (2012). Protective effects of protein hydrolysate from marine microalgae Navicula incerta on ethanol-induced toxicity in HepG2/CYP2E1 cells. Food Chemistry, 132(2), 677-685.

Khanavi, M., Nabavi, M., Sadati, N., Shams Ardekani, M., Sohrabipour, J., Nabavi, S. M. B., Ghaeli, P. and Ostad, S. N. (2010). Cytotoxic activity of some marine brown algae against cancer cell lines. Biological Research, 43(1), 31-37.

Kim, J., Kim, S.-K. J. C. P. and Science, P. (2013). Bioactive peptides from marine sources as potential anti-inflammatory therapeutics. 14(3): 177-182.

Kim, J., Lee, J.-E., Kim, K. and Kang, N. (2018). Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health. Marine drugs, 16(11): 459.

Kim, S. M., Jung, Y. J., Kwon, O. N., Cha, K. H., Um, B. H., Chung, D., & Pan, C. H. (2012). A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Applied biochemistry and biotechnology, 166(7), 1843-1855.

Koneri, R., Jha, D. K., & Mubasheera, M. G. (2018). An investigation on the type I antidiabetic activity of methanolic extract of Marine algae, Gracilaria edulis and Sargassum polycystum. International Journal of Pharmaceutical Sciences and Research, 9(7), 2952-2959.

Le, B., Golokhvast, K. S., Yang, S. H., & Sun, S. (2019). Optimization of microwave-assisted extraction of polysaccharides from Ulva pertusa and evaluation of their antioxidant activity. Antioxidants, 8(5), 129.

Lee, S.-H. and Jeon, Y.-J. (2013). Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia, 86: 129-136.

Lemoine, Y., & Schoefs, B. (2010). Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynthesis research, 106(1), 155-177.

Li, Y., Fu, X., Duan, D., Xu, J. and Gao, X. (2018). Comparison study of bioactive substances and nutritional components of brown algae Sargassum fusiforme strains with different vesicle shapes. Journal of Applied Phycology, 30(6), 3271-3283.

Liu, B., Liu, Q.-M., Li, G.-L., Sun, L.-C., Gao, Y.-Y., Zhang, Y.-F., Liu, H., Cao, M.-J. and Liu, G.-M. (2019). The anti-diarrhea activity of red algae-originated sulphated polysaccharides on ETEC-K88 infected mice. RSC Advances, 9(5), 2360-2370.

Liu, X., Du, P., Liu, X., Cao, S., Qin, L., He, M., He, X. and Mao, W. (2018). Anticoagulant Properties of a Green Algal Rhamnan-type Sulfated Polysaccharide and Its Low-molecular-weight Fragments Prepared by Mild Acid Degradation. Marine drugs, 16(11), 445.

Lunagariya, J., Bhadja, P., Zhong, S., Vekariya, R., & Xu, S. (2019). Marine natural product bis-indole alkaloid caulerpin: Chemistry and biology. Mini reviews in medicinal chemistry, 19(9), 751-761.

Luque Alanís, P. (2013). Isolation, Characterization and Identification of Microalgae from the Red Sea, Doc Number:

Lynch, D. V. and Thompson, G. A. (1982). Low temperature-induced alterations in the chloroplast and microsomal membranes of Dunaliella salina. Plant physiology, 69(6): 1369-1375.

Maeda, H., Fukuda, S., Izumi, H. and Saga, N. (2018). Anti-Oxidant and Fucoxanthin Contents of Brown Alga Ishimozuku (Sphaerotrichia divaricata) from the West Coast of Aomori, Japan. Marine drugs, 16(8), 255.

Malovanyy, M., Shandrovych, V., Malovanyy, A., & Polyuzhyn, I. (2016). Comparative analysis of the effectiveness of regulation of aeration depending on the quantitative characteristics of treated sewage water. Journal of Chemistry, 2016(1), 6874806.

Marounek, M., Volek, Z., Taubner, T., Dušková, D. and Čermák, L. (2019). Effect of amidated alginate on faecal lipids, serum and hepatic cholesterol in rats fed diets supplemented with fat and cholesterol. International journal of biological macromolecules, 122, 499-502.

Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15(2), 160-176.

Mikami, K., & Hosokawa, M. (2013). Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International journal of molecular sciences, 14(7), 13763-13781.

Miyashita, K., Nishikawa, S., Beppu, F., Tsukui, T., Abe, M. and Hosokawa, M. (2011). The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. Journal of the Science of Food and Agriculture, 91(7), 1166-1174.

Mohan, M. S. G., Achary, A., Mani, V., Cicinskas, E., Kalitnik, A. A. and Khotimchenko, M. (2019). Purification and characterization of fucose-containing sulphated polysaccharides from Sargassum tenerrimum and their biological activity. Journal of Applied Phycology, 1-13.

Moharram, F. A. E., Al-Gendy, A. A., El-Shenawy, S. M., Ibrahim, B. M., & Zarka, M. A. (2018). Phenolic profile, anti-inflammatory, antinociceptive, anti-ulcerogenic and hepatoprotective activities of Pimenta racemosa leaves. BMC complementary and alternative medicine, 18(1), 208.

Montero, L., del Pilar Sánchez-Camargo, A., Ibáñez, E. and Gilbert-López, B. (2018). Phenolic compounds from edible algae: Bioactivity and health benefits. Current medicinal chemistry, 25(37): 4808-4826.

Motshakeri, M., Ebrahimi, M., Goh, Y. M., Othman, H. H., Hair-Bejo, M., & Mohamed, S. (2014). Effects of brown seaweed (Sargassum polycystum) extracts on kidney, liver, and pancreas of type 2 diabetic rat model. Evidence‐Based Complementary and Alternative Medicine, 2014(1), 379407.

Munir, N., Imtiaz, A., Sharif, N. and Naz, S. (2015). Optimization of growth conditions of different algal strains and determination of their lipid contents. Journal of Animal and Plant Science, 25(2), 546-553.

Murray, M., Dordevic, A. L., Bonham, M. P. and Ryan, L. (2018). Do marine algal polyphenols have antidiabetic, antihyperlipidemic or anti-inflammatory effects in humans? A systematic review. Critical reviews in food science and nutrition, 58(12), 2039-2054.

Nakas, J., Schaedle, M., Parkinson, C., Coonley, C. and Tanenbaum, S. (1983). System development for linked-fermentation production of solvents from algal biomass. Applied and environmental microbiology, 46(5), 1017-1023.

Pangestuti, R., & Kim, S. K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of functional foods, 3(4), 255-266.

Patel, A., Matsakas, L., Hrůzová, K., Rova, U., & Christakopoulos, P. (2019). Biosynthesis of nutraceutical fatty acids by the oleaginous marine microalgae Phaeodactylum tricornutum utilizing hydrolysates from organosolv-pretreated birch and spruce biomass. Marine drugs, 17(2), 119.

Patil, L. and Kaliwal, B. (2019). Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess and biosystems engineering, 1-16.

Patil, N., Le, V., Sligar, A. D., Mei, L., Chavarria, D., Yang, E. Y. and Baker, A. (2018). Algal Polysaccharides as Therapeutic Agents for Atherosclerosis. Frontiers in Cardiovascular Medicine, 5, 153.

Paudel, P., Seong, S. H., Park, H. J., Jung, H. A. and Choi, J. S. (2019). Anti-Diabetic Activity of 2, 3, 6-Tribromo-4, 5-Dihydroxybenzyl Derivatives from Symphyocladia latiuscula through PTP1B Downregulation and α-Glucosidase Inhibition. Marine drugs, 17(3): 166.

Peng, J., Yuan, J.-P., Wu, C.-F. and Wang, J.-H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine drugs, 9(10): 1806-1828.

Perozeni, F., Cazzaniga, S., Baier, T., Zanoni, F., Zoccatelli, G., Lauersen, K. J., ... & Ballottari, M. (2020). Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Plant Biotechnology Journal, 18(10), 2053-2067.

Prabakaran, G., Moovendhan, M., Arumugam, A., Matharasi, A., Dineshkumar, R., & Sampathkumar, P. (2019). Evaluation of chemical composition and in vitro antiinflammatory effect of marine microalgae Chlorella vulgaris. Waste and Biomass Valorization, 10(11), 3263-3270.

Qiao, J., Einarsson, H. and Eyþórsdóttir, A. (2010). Antibacterial effect of extracts from two Icelandic algae (Ascophyllum nodosum and Laminaria digitata). UNU-Fisheries Training Programme, University of Akureyri: Reykjavik, Iceland.

Rai, M. P., Gautom, T. and Sharma, N. (2015). Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. Online Journal of Biological Sciences, 15(4): 260.

Rajakumar, P. (2018). Psychoactive Properties of Microalgae Microalgae in Health and Disease Prevention, pp. 325-334, Elsevier.

Rajkumar, G., Bhavan, P. S., Suganya, M., Srinivasan, V., Karthik, M., & Udayasuriyan, R. (2018). Phytochemical characterization of marine macro alga Sargassum polycystem, molecular docking, and in vitro anti-bacterial activity against Psuedomonas aeruginosa. International biological and biomedical journal, 4(1), 35-47.

Ramanan, R., Vinayagamoorthy, N., Sivanesan, S. D., Kannan, K. and Chakrabarti, T. (2012). Influence of CO 2 concentration on carbon concentrating mechanisms in cyanobacteria and green algae: a proteomic approach. Algae, 27(4): 295-301.

Rao, A. R., Dayananda, C., Sarada, R., Shamala, T. and Ravishankar, G. (2007). Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource technology, 98(3): 560-564.

Régnier, P., Bastias, J., Rodriguez-Ruiz, V., Caballero-Casero, N., Caballo, C., Sicilia, D., ... & Pavon-Djavid, G. (2015). Astaxanthin from Haematococcus pluvialis prevents oxidative stress on human endothelial cells without toxicity. Marine drugs, 13(5), 2857-2874.

Ren, T. (2014). Primary factors affecting growth of microalgae optimal light exposure duration and frequency (Master's thesis, Iowa State University).

Rhimou, B., Hassane, R., José, M. and Nathalie, B. (2010). The antibacterial potential of the seaweeds (Rhodophyceae) of the Strait of Gibraltar and the Mediterranean Coast of Morocco. African Journal of Biotechnology, 9(38): 6365-6372.

Ronda, S. R., Bokka, C. S., Ketineni, C., Rijal, B. and Allu, P. R. (2012). Aeration effect on Spirulina platensis growth and γ-linolenic acid production. Brazilian Journal of Microbiology, 43(1), 12-20.

Ryu, B., Qian, Z.-J., Kim, M.-M., Nam, K. W. and Kim, S.-K. (2009). Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiation Physics and Chemistry, 78(2), 98-105.

Saadi, S., Saari, N., Anwar, F., Hamid, A. A. and Ghazali, H. M. (2015). Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnology advances, 33(1), 80-116.

Sanjeewa, K., Fernando, I., Kim, S.-Y., Kim, W.-S., Ahn, G., Jee, Y. and Jeon, Y.-J. (2019). Ecklonia cava (Laminariales) and Sargassum horneri (Fucales) synergistically inhibit the lipopolysaccharide-induced inflammation via blocking NF-κB and MAPK pathways. Algae, 34(1), 45-56.

Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722.

Sengupta, S., Koley, H., Dutta, S. and Bhowal, J. (2018). Hypocholesterolemic effect of Spirulina platensis (SP) fortified functional soy yogurts on diet-induced hypercholesterolemia. Journal of Functional Foods, 48, 54-64.

Shah, A. V., Desai, H. H., Thool, P., Dalrymple, D., & Serajuddin, A. T. (2018). Development of self-microemulsifying drug delivery system for oral delivery of poorly water-soluble nutraceuticals. Drug development and industrial pharmacy, 44(6), 895-901.

Sharif, N., Munir, N., Saleem, F., Aslam, F., & Naz, S. (2014). Prolific anticancer bioactivity of algal extracts. cell, 3(4), 8-21.

Shi, D., Li, X., Li, J., Guo, S., Su, H. and Fan, X. 2010. Antithrombotic effects of bromophenol, an alga-derived thrombin inhibitor. Chinese journal of oceanology and limnology, 28(1): 96-98.

Shoubaky, G. A. E., Abdel-Daim, M. M., Mansour, M. H., & Salem, E. A. (2016). Isolation and identification of a flavone apigenin from marine red alga Acanthophora spicifera with antinociceptive and anti-Inflammatory activities. Journal of experimental neuroscience, 10, JEN-S25096.

Silva, L. M. C. M., Lima, V., Holanda, M. L., Pinheiro, P. G., Rodrigues, J. A. G., Lima, M. E. P. and Benevides, N. M. B. (2010). Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladiella capillacea. Biological and Pharmaceutical Bulletin, 33(5), 830-835.

Simosa, A. E. 2016. Factors affecting algal biomass growth and cell wall destruction.

Singh, R. S., & Walia, A. K. (2018). Lectins from red algae and their biomedical potential. Journal of applied phycology, 30(3), 1833-1858.

Škrovánková, S. (2011). Seaweed vitamins as nutraceuticals. Advances in food and nutrition research (Vol. 64, pp. 357-369): Elsevier.

Soliman, A. S., Ahmed, A., Abdel-Ghafour, S. E., El-Sheekh, M. M. and Sobhy, H. M. (2018). Antifungal bio-efficacy of the red algae Gracilaria confervoides extracts against three pathogenic fungi of cucumber plant. Sciences, 8(03), 727-735.

Sommerstein, R., Hasse, B., Marschall, J., Sax, H., Genoni, M., Schlegel, M. and Widmer, A. F. (2018). Global Health Estimate of Invasive Mycobacterium chimaera Infections Associated with Heater–Cooler Devices in Cardiac Surgery. Emerging infectious diseases, 24(3), 576.

Souza, B. W., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Teixeira, J. A., Coimbra, M. A. and Vicente, A. A. (2012). Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 27(2), 287-292.

Souza, C. Á. P. B., de Oliveira, B. A., Santos, S. A. A. R., Batista, F. L. A., Andrade, F. R. N., Neto, E. J. R., de Melo, J. d. M. A., da Silva Mendes, F. R., Barroso, L. K. V. and Canuto, K. M. (2018). Orofacial antinociceptive effect of sulphated polysaccharide from the marine algae Hypnea pseudomusciformis in rodents. Inflammopharmacology, 1-9.

Souza, R. B., Frota, A. F., Sousa, R. S., Cezario, N. A., Santos, T. B., Souza, L. M. F., Coura, C. O., Monteiro, V. S., Cristino Filho, G. and Vasconcelos, S. M. M. (2017). Neuroprotective Effects of Sulphated Agaran from Marine Alga Gracilaria cornea in Rat 6‐Hydroxydopamine Parkinson's Disease Model: Behavioural, Neurochemical and Transcriptional Alterations. Basic & clinical pharmacology & toxicology, 120(2): 159-170.

Stengel, D. B. and Connan, S. (2015). Marine algae: a source of biomass for biotechnological applications Natural Products From Marine Algae (pp. 1-37): Springer.

Sukwong, P., Sunwoo, I. Y., Nguyen, T. H., Jeong, G. T., & Kim, S. K. (2019). R-phycoerythrin, R-phycocyanin and ABE production from Gelidium amansii by Clostridium acetobutylicum. Process Biochemistry, 81, 139-147.

Sun, Y., Chen, X., Liu, S., Yu, H., Li, R., Wang, X., Qin, Y. and Li, P. (2018). Preparation of low molecular weight Sargassum fusiforme polysaccharide and its anticoagulant activity. Journal of Oceanology and Limnology, 36(3), 882-891.

Tang, G. and Suter, P. M. (2011). Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella, and Dunaliella. Journal of Pharmacy and Nutrition Sciences, 1(2).

Taniguchi, M., Kuda, T., Shibayama, J., Sasaki, T., Michihata, T., Takahashi, H. and Kimura, B. (2019). In vitro antioxidant, anti-glycation and immunomodulation activities of fermented blue-green algae Aphanizomenon flos-aquae. Molecular biology reports, 1-12.

Tapia-Martinez, J., Hernández-Cruz, K., Franco-Colín, M., Mateo-Cid, L. E., Mendoza-Gonzalez, C., Blas-Valdivia, V. and Cano-Europa, E. (2019). Safety evaluation and antiobesogenic effect of Sargassum liebmannii J. Agardh (Fucales: Phaeophyceae) in rodents. Journal of Applied Phycology, 1-11.

Tascon, M., Benavente, F., Sanz-Nebot, V. M., & Gagliardi, L. G. (2015). Fast determination of harmala alkaloids in edible algae by capillary electrophoresis mass spectrometry. Analytical and Bioanalytical Chemistry, 407(13), 3637-3645.

Torres, P., Santos, J. P., Chow, F. and dos Santos, D. Y. (2019). A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). Algal Research, 37, 288-306.

Ueno, M., Nogawa, M., Siddiqui, R., Watashi, K., Wakita, T., Kato, N., Ikeda, M., Okimura, T., Isaka, S. and Oda, T. (2019). Acidic polysaccharides isolated from marine algae inhibit the early step of viral infection. International journal of biological macromolecules, 124, 282-290.

Usher, P. K., Ross, A. B., Camargo-Valero, M. A., Tomlin, A. S. and Gale, W. F. (2014). An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels, 5(3), 331-349.

Vallinayagam, K., Arumugam, R., Kannan, R. R. R., Thirumaran, G. and Anantharaman, P. (2009). Antibacterial activity of some selected seaweeds from Pudumadam coastal regions. Global Journal of Pharmacology, 3(1), 50-52.

Vaseghi, G., Sharifi, M., Dana, N., Ghasemi, A., & Yegdaneh, A. (2018). Cytotoxicity of Sargassum angustifolium partitions against breast and cervical cancer cell lines. Advanced Biomedical Research, 7(1), 43.

Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E. and Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of applied phycology, 29(2), 949-982.

Wu, H., Niu, H., Shao, A., Wu, C., Dixon, B., Zhang, J., Yang, S. and Wang, Y. (2015). Astaxanthin as a potential neuroprotective agent for neurological diseases. Marine drugs, 13(9), 5750-5766.

Xie, L., Cahoon, E., Zhang, Y., & Ciftci, O. N. (2019). Extraction of astaxanthin from engineered Camelina sativa seed using ethanol-modified supercritical carbon dioxide. The Journal of Supercritical Fluids, 143, 171-178.

Xing, R., Ma, W., Shao, Y., Cao, X., Chen, L. and Jiang, A. (2019). Factors that affect the growth and photosynthesis of the filamentous green algae, Chaetomorpha valida, in static sea cucumber aquaculture ponds with high salinity and high pH. PeerJ, 7, e6468.

Xu, H., Liu, Z., Yuan, L. and Yang, L. (2009). Effect of pH on growth of several freshwater algae. Environmental Science and Technology, 32(1), 27-30.

Yan, X., Yang, C., Lin, G., Chen, Y., Miao, S., Liu, B. and Zhao, C. (2019). Antidiabetic potential of green seaweed Enteromorpha prolifera flavonoids regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice. Journal of food science, 84(1), 165-173.

Zakaria, S. M., & Kamal, S. M. M. (2016). Subcritical water extraction of bioactive compounds from plants and algae: applications in pharmaceutical and food ingredients. Food Engineering Reviews, 8(1), 23-34.

Zorofchian M. S., Karimian, H., Khanabdali, R., Razavi, M., Firoozinia, M., Zandi, K., & Abdul Kadir, H. (2014). Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. The Scientific World Journal, 2014(1), 768323.